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ANALYSIS OF THE DISPERSION FORCE BETWEEN A LAYERED SPHERE AND A CYLINDER

1. INTRODUCTION

IThe continuum theory developed by Lifshitz and coworkers (11)- predicts

the van der Waals forces acting between colloidal or macroscopic bodies from

knowledge of the dielectric spectra of the individual materials. Formal exact

solutions, accounting for the effect of retardation, exist for planar geometries

such as flat plates and multilayers (3+ and discrete particles such as spheres

and cylinders (41. Each comprises a complicated nested set of sums and/or

integrals over a spectrum of wavenumbers and frequencies of the fluctuating

electromagnetic modes. The power of the theory lies in the natural accom-

modation of the many-body effects responsible for the quantitative failure for

condensed media of the pairwise additive Hamaker theory. The price is the need

for complete dielectric spectra for the component materials and involved numeri-

cal calculations which obscure the relationship between these dielectric proper-

ties and the essential features of the force.

Indeed, quantitative implementation of the theory began only when Par-

segian and Ninham (5,6) demonstrated that sufficiently detailed spectra could be

constructed from incomplete data. Subsequently the approach has been refined

(7-10) and effective Hamaker constants, defined for interactions between flat

plates separated by a distance as

2
V = -A(I)/12rl 2

, (1.1)

calculated for several dozen materials. Furthermore direct measurements of for-

ces between mica surfaces from separations of 2-100 nm (11) verify the predic-

tions within 10-30% in vacuum and several liquids.

7
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For nonolanar geometries results are limited. If the principle radii of

curvature of the gap, R, and R2 , exceed substantially the wavelengths of the

fluctuations (-1jm), the Derjaguin approximation,

V = 2r(R1R 2)"/ f Vfp(I)dI, (1.2)

is valid. Here h is the minimum separation between the surfaces. For smaller

particles Mahanty and Ninham (3) suggested

V = A(h) G(h) (1.3)

with the effective Hamaker constant A, from the theory for flat plates, accoun-

ting for the material properties and retardation and the geometrical factor G,

from the Hamaker theory, accounting for the shape effects. Pailthorpe and

Russel (12) compared this approximation with the exact theory for spheres with

retardation, demonstrating reasonable agreement for 0.25 and 0.50 pm polystyrene

spheres in salt water. Thus there exist two reasonable and complementary

approximations for interactions between particles, both based on the flat plate

results.

While firmly established scientifically, the Lifshitz theory has seen

limited use. Calculations of flocculation rates, phase equilibria, rheological

properties, and transport coefficients generally resort to the simpler Hamaker

theory, treating A as a constant parameter and, perhaps, accounting for retar-

dation through a single characteristic wavelength. Part of the resistance ari-

ses, no doubt, from the numerical effort necessary and the uncertainty about

8



dielectric spectra, problems addressed squarely by Hough and White (9). An

additional factor, however, is the apparent specificity of. the result since

spectra with multiple relaxation frequencies preclude systematic parametric

studies.

Here we develop from the exact theory simple approximations, with a two-

parameter representation of the dielectric spectra of the individual

materials, and demonstrate them to be accurate within 20-30%. The approach pre-

serves the principle features of the continum theory, while increasing only

marginally over the Hamaker theory the numerical effort and the number of para-

meters required to specify the interaction potential for a particular system.

The following sections first discuss the approximate representation of

the dielectric spectra (§2), which does not originate with us. Then §3 outlines

the additional mathematical aoproximations reouired to reduce the rigorous

results for interactions between flat plates, both non-retarded and retarded, to

simple formulae and demonstrates their accuracy by comparison with exact

results for several materials. §4 generalizes the treatment to coated half spa-

ces with a similar test against evaluations of the exact expressions. Finally

§5 discusses the qualitative features of the results for interaction across a

vacuum showing that, although a coating can reduce the magnitude, the potential

remains attractive and an optimum thickness does not exist. §6 implements the

Derjaguin approximation to extend the results to interactions between a sphere

and a cylinder or other curved bodies.

,-Q



2. DIELECTRIC SPECTRA

The Lifshitz theory characterizes the electromagnetic fluctuations

responsible for van der Waals forces in condensed media through the frequency

dependent permittivity

M(w) = C'(w) + i C"( M . (2.1)

Hence, the dielectric spectra of the individual materials comprising a par-

ticular system must be known. Fortunately, the final mathematical form of the

theory requires only (itn) with tn = 2nnkT/h (n=O,l .... ). While the real and

imaginary parts evaluated at real frequencies individually vary wildly, the

complex permittivity evaluated at imaginary frequencies decreases monotonically

from the static dielectric constant at n=O to unity as n-oo. Furthermore,

sampling at integral values of n emphasizes the higher frequencies, i.e. in the

far infrared, the visible, and the ultraviolet beyond which the permittivities

of all materials approach unity.

The representation of c(it) with simplified analytical forms has been

discussed thoroughly by Hough and White (9). Complete representations for most

materials are possible with the form

c(it) = 1 + E d./('+!/wo) + r f /[+C/ 1) (2.2)

comprising a superposition of Debye dipolar relaxations and undamped resonances

appropriate for relaxations in nonpolar materials. The coefficients dj and fj

indicate the oscillator stengths, or the magnitude of the relaxation, and the w*

the relaxation frequencies.

10



Hough and White (9) represented most materials by one relaxation in the

infrared and a second in the ultraviolet with the parameters extracted from the

static dielectric constant and data on the refractive index in the visible. For

materials which do not absorb in the visible £''=O and

C(W) = C'(w) n (W) = 1 + f /(1-(W/wu)2 (2.3)
uv uv

so th3t

n = (n2 - (/u 2 + f (2.4)

Thus f =lim n2 - 1 n 2 - and w follows from the slope of theuv n0 uv

plot of n2-1 vs. (n2 -I) 2 At zero frequency where c''=O as well,

C(O) = I+ fir + f u (2.5)

giving

2
f. = c(O) - n 2 (2.6)
ir 0

In the absence of absorption data in the infrared wir must be specified

arbitrarily, but the error should be insignificant.

Only for water, and perhaps other polar liquids, does the microwave relaxa-

tion appear significant. For some materials for which extensive data is

available, such as quartz, polystyrene, and water, additional peaks in the IR

and UV have been included to produce more precise spectra.

Our objective here is the simplest accurate formulation of the Lifshitz

theory. To that end we retain only the single UV relaxation, evaluated as

described by Hough and White (9). Thus for material j

112
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0%
o,

j,

c.lin) =1 + (n2  + (Cn1w.)2  (2.7)

n oj

providing a two parameter, noj and wj, characterization of any material. Values

.K for a variety of materials are listed in Table 1.

Figure 1 compares this approximation for water with the detailed descrip-

tion of Gingell and Parsegian (13) based on one microwave, five infrared, and

six ultraviolet relaxations. The points correspond to the latter values at the

frequencies tn sampled by the Lifshitz theory. Clearly the error is substantial 7

for n=1-10 but insignificant for n ) 20. Because of the complex nature of the

spectra for water this should represent a worst case. In the following sections

we assess the resulting error in the interaction potential.

3. UNCOATED HALF SPACES

From Lifshitz theory, the interaction energy per unit area between two

uncoated half spaces, composed of materials 1 and 2, separated by thickness I of

material 3, is (1).

V A13 2(M)
132 (1) = - (3.1)

12n 2

where A13 2, referred to below as the "Hamaker constant" is given by

A132 = 2 O r xln[l-A 13 Az3e- X + ln[ 1-A1 3 2 3 X1 dx (3.2)
n=O n

*~ -C s . S -s
~~jk k js+A jkkj &JK + Sk+S

kk kj
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2 2 2n2 ck-r 2tn.
k  C C n c

t 2nnkT
n h k ek(in)

with k Boltzmann's constant, T the temperature, c the speed of light in vacuum,

and h Planck's constant divided by 2fr. The prime (') on the sum denotes that

the first term is to be multiplied by I.

Eq. (3.2) can be simplified for extreme values of f. As f-0, sk-x and

(3.2) becomes

3 0 0 -x 0 C (33)132 ~ r f XnZ1-A3 a e ]Idx a (3.3)
n=1 0 3 k

In the other extreme in which f-.a, the lower limit of integration rn-.x for all n

except n=O. This causes all terms in the sum of (3.2) to vanish except for the

leading term leaving

A k-- f xlnl 0Az1Id (3.4)
132 4 0 -L13 23

e  J0

3.1 Approximations

Over the range of integration, the quantity tnf/CX monotonically between

its maximum value of (2Vc-3)-1 at the lower limit of integration and zero at the

upper limit. Expanding in a Taylor series aobut Cn1/Cx-0, one obtains the

following approximations:

'n' 2
sk  x{1 + 0[(- ) 11 (3.5a)

13
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0 n 2 (3.6b)
jk = Ajk+ ON-) I

C nR2
Ajk =  0[(- ) I (3.5c)

Approximating ln(1+6) 6 and dropping terms of order (nJ/Cx) 2 allows the

integrals in (3.2) to be evaluated easily. The result is

00 -r°

3 0 0 n
A kT _ 6 (3.6)
132 2 13623 (r,1)e

n=0
Next, we approximate the sum over n by the integral with respect to n.

After expressing dn in terms of drn, (3.6) becomes

3 c A 1323 (r+l)e rdr (3.7)A132 8ir f 132

0

where the subscript on r has been dropped. When E3(in)=1 (vacuum or rarified

gas), the terms of the sum decrease monotonically with n. Then Cauchy's

integral theorem provides a bound on the error made by replacing the sum by the

integral

's(n) - f s(n)dn ( s (3.8)
n=O 0

if 0(s(n+l)4s(n).

Substituting C3=1 into (3.7), together with (2.7) for el and £2, then

expressing n in terms of r and integrating, we obtain

14

. .. • --a-.-. ,- - -, -. .--. . .A t-r-A-.- ' ! t J ,%--. ,! '% ," - %



2 2"

5%

3hc (n10 -1)(n 20 -1) 2 2 F(r1)-F(r 2 )
A (3.9)12 8n1 2 2 1)  r2  2

(n10 + 1)(n 20.r 2 r1

OD -r

F(x) dr 3.10)
2 2 d0 r+x

0

2v. 2 2 .1

r v 2i c (3.11a,b)
c .i 2 .

When r1 = r2 , the last factor on the right-hand-side of (3.9) is indeterminate

but can be resolved as -d2F(x)/dx2. Thus, for identical half spaces, (3.9)

becomes

2 23h . (n. -1)

F(x) is a positive, monotonically decreasing function (Figure 12), which

can be expressed in terms of sine and cosine integrals through their auxiliary

functions, f(x) and g(x)(12):

F(x) = x f(x) + g(x) (3.13a)

F'(x) = x'1[g(x) +1] - x2 +)flx) (3.13b)

Thus the following asymptotic behavior can be deduced:

as x-O F(x) - (n/2)x 1  (3.14a)

as x-+% F(x) - 2x- 2  (3.14b)

15
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The asympototic behavior of Eq. (3.9) as 1-0 follows from (3.14a) as

2 )(n2  (

3 VV2 20 0
12 v v 2 21 2 (n 10+1)(n 20+l)

representing the non-retarded interaction.

As a final case, consider the fully retarded interaction (1--w) for which

the Hamaker constant is given by (3.4), which with ln(1+8) t 6, reduces to

(c0 1 - 0 3 )(c0 2-c0 3)A13 kT (3.16)
132 (C0 1+c0 3 )(c0 2 +C0 3)

In obtaining (3.16), no assumption was made concerning the dielectric relaxation

of the materials. Thus coj denotes the true zero-frequency dielectric constant,

whereas the njo in (3.9), (3.12) and (3.15) corresponds to the zero-frequency

dielectric constant computed from the UV absorption peak only.

3.2 Testing of Approximations

Using tabulated deta (7), we evaluated the non-retarded Ha'aker constant

from (3.15) and compared the result to that from (3.9) with 1=0 and c3 =1, using

IR and (in the case of water) microwave absorption peaks. The results for

identical halfspaces are given in Table 1 while those for dissimilar halfspaces

are given in Table 2.

Considering the simplicity of (3.15), its accuracy in the above tests is

remarkable. Especially so are the cases involving water which absorbs strongly

in the microwave frequency range. Eq. (3.15) only uses data on the UV absorp-

tion peak, which accounts for only 10% of the dielectric relaxation for water.

16
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Except for the case of quartz/polystyrene, all of the Hamaker constants in

the column labelled "Eq. 3.9" of Tables 1 and 2 were also calculated by Hough

and White (7). Our values agree closely with theirs.

Fig.2 compares Hamaker constants computed from the full series given by

(3.2) to those from the approximate analytical expressions developed above, over

the entire spectrum of separation distance. Eq. (3.12) clearly provided a reaso-

nable approximation at small to moderate separations, but begins to diverge from

(3.2) for separations larger than one micron. Also note the (3.16) predicts

that A asymptotes to a constant as I-., whereas (3.9) or (3.12) incorrectly

predicts that A is 0(f-1). This divergence in asymptotic behavior arises from

replacing the sum by the integral, which introduces an uncertainty equal to half

of the leading term. Although the leading term is a small fraction of the sum

for small to moderate f, only it survives as 1-.o. Like Table 1, Fig. 2 shows

(3.15) to be a good approximation for the non-retarded limit. Also (3.16), with

the true zero-frequency dielectric constants represents well the fuly retarded

limit.

Fig. 3 shows the same comparisons for two dissimilar half spaces. Water

was chosen for the second half space because absorption in the UV, the only fac-

tor considered in (3.9), accounts for only 10% of the total dielectric relaxa-

tion. Thus water represents the worst case. Despite this, the agreement is as

good as in Fig. 2.

Figs. 4 and 5 show the effect of UV absorption frequency, wj, and UV

absorption peak height, n2 -1, on the Hamaker constant computed from (3.12). A

large peak at high frequency gives rise to the strongest attraction. Increasing

the peak height increases the Hamaker constant at all separations by about the

17
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same fraction, whereas increasing the absorption frequency increases the Hamaker

constant at small separations by a larger fraction than at.large separations.
,.'

Note that the reduction in the Hamaker constant due to retardation becomes noti-

ceable when the separation is larger than about 2nm.

Fig. 6 gives the non-retarded Hamaker constant for an arbitrary set of phy-

sical properties and illustrates the results with a number of common materials.

Teflon, water, and short-chain alkanes give the smallest Hamaker constant,

quartz and sapphire the largest.

4. COATED HALF SPACES

The effective Hamaker constant for the interaction between two half spaces,

one composed of material 1 with a coating of thickness b of material 4 and the

other of pure 2, separated by a distance I filled with gas(vacuum) is (1, p. 143)

3

A = - kT r f xjln(1-6 3 1A32 exp(-x)]142 n=O r .
n

(4.1)

+ ln[1-A 3 1 A3 2exp(-x)]}dx

-* with

631 = 634+ A4 1exp(-rnbs 4/ )J/{1+6 3 4a4 1exp(-rnbs 4/)) 4.2)

and A34' A41' 632' A34' a41' A, si, c., r, and § - § defined as in (3.2).

The limiting forms of the effective Hamaker constant,

A14 2(I) - A12(I) as I -

-A 4 2 (1) as - 0 (4.3)

18
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indicate that the coating completely masks the substrate at small separations

but becomes invisible for separations large with respect to its thickness.

Applications of the approximations outlined and tested in §3 leads to a

substantially simplified form of (4.1). The expansion about tnI/Cx=O yields

31 ={A 3 4+ A4 1exp(-bx/1)j/fl+ 3 4 a4exp(-bx/1)j (4.4)

together with (3.5a-c).

Then expanding the logarithms and truncating the series at O(A2) permits an

analytic integration over x such that

A142 2 kT r {(1-C 4 ),(l+c 4 )(14rn)exp(-rn) + (C4- C1)/(4+ 1i

n=O

[l+(l+b/i)r n]/(l+b/1) 2exp-(l+b/i)r n1(1-C 2 )/(l+c 2 ). (4.5)

The conversion of the sum over n to an integral and substitution of the single

term approximations for the dielectric spectra provides an expression which is

integrable via a partial fraction expansion. The final result

2 1  2 22 .

n2,- n -1 r2r4
A -3hc 2 40 2 4 Fr -Fr)A142 8Yr1 2 2 2 2 '4) F(r2))

n2 0
+ 1  n4 0+1 r2-r4

n2 n 2  r2P2P2  1 2

+2 2 b/ [ 2 2 2 2 F(r2 (1+b/1))
n1 0+ n 40  r2- P1)lr2- P4)

(4.6)

1 -p1/r4 F(pl(1+b/1))
+ 2 2 2
(p1 - P~)(P4 - r2 )

19
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1 2 21 4/, F(p4(1+b/1))]J ":
4" 14

2 2 2 2 F 41+b)
(p p )(p- r 2 )

involves the function F defined by (3.10) and

2 2 2 2
n + n rlr

P2 1 (r 2+ 2 )1 18 40 10 1 11/2
1 4  4 [1-8 2 2 2 2 2-

(n 4 0 + 1)(n 10 + 1) (r1 + r4

(4.7)

2 1 1 -1 +1
1 40 10 10 40

+

r2 2n2 2r 2 n2 2 2 r 2
14 40 10 1 "10 4 4

The limits for b-0 or n4
2 - 1 reduce to the previous result (3.9).

Although A1 4 2 is more complex than A 12 , both require only the numerical

evaluation of F(x). The potential, of course, now depends on the noi and wji for

each of the three materials plus b and 1. Since the character of the functions

is not changed by the layer, the approximations should be as accurate as for the

uncoated case.

5. CONSEQUENCES OF COATING

5.1 Coated Half Spaces Always Attract Across a Vacuum

One reason for coating a surface iS to alter its interaction with other sur-

faces. In general, the coating can reverse the sign of the interaction (for

example, convert an attractive interaction into a repulsive one). However, the

interaction between two half spaces separated by vacuum is always attractive, .j

whether or not the surfaces are coated. The proof follows. _, .

20
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When C3 1, the definitions below (3.20) yield

2 + (C 1)r2  (51

C .X-S. S.-X
= A =..a.(5.2a,b)

j3 .x+s. j3 S+

Lemma 1: e.x~s. For c.)l, s )0, and x)O, the proof follows from (5.1):

2_ 2 2_2 2_2 2_2(C x) -s. (C (c.M)C.+)x -r I (c (+1)x -r x -r )0. (5.3)

This last inequality results from the definition of x as a dummy variable of

*integration (see (3.2) which spans the interval rn~x~r.

Lemma 2: A 3)0 The proof follows directly from (5.2a) and Lemma 1.

*Lemma 3: Ak3)Akj Using the definition following (3.2), this inequality is

* equivalent to

C x C sk-

-k ,~.(5.4)

* Both sides of this inequality have the form (y-l)/(y.1), which is a monotoni-

cally increasing function of y; thus the proof requires only that

k (5.5)
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which is implied by Lemma 1.

Lemma 4: Aj3(bk))O Since IAj3I, IAjkI, and the exponential factor in (4.7)

are all less than unity, their product must be less than unity in absolute

value. Thus the denominator of (4.1) is positive, regardless of the sign of

Ajk, and the sign of Aj3(bk) is determined by the numerator. Lemmas 2 and 3

imply

zeZAk3  A A = -A (5.6)
k3 k3 kj Ajk

and

A + e- Z 0

k3 jk

provided z)O. Thus the numerator of (4.2) is positive. The corollaries to

Lemmas 2-4 for the A can be similarly proven using sj)k instead of Lemma 1 and

(5.2b) instead of (5.2a).

From Lemmas 2 and 4 and their corollaries, it follows that, when the two

(coated) halfspaces are separated by vacuum, all the A's appearing in (4.1) are

positive numbers. Thus, the logarithms are negative and the net interaction is

attractive, regardless of the properties of any films or of the substrates.

Coating of the halfspace by a film cannot make the interaction repulsive.

5.2 Effect of Film Thickness

Although coating one or both of the half spaces cannot change the sign of

the interaction across a vacuum, the coating can alter the magnitude of the

interaction. Figure 7 shows the effect of film thickness on the interaction of

22
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two quartz half-spaces with one coated with a film of polystyrene. When the

nonretarded Hamaker constant for coating/vacuum/substrate is less than that for

substrate/vacuum/substrate, the former Hamaker constant can exhibit a maximum

with respect to separation distance, 1. However, this maximum disappears when

the Hamaker constant is divided by 12 te obtain the interaction energy (3.1).

Indeed, film thickness, b, primarily determines the separation distance at which

the material properties of the substrate (1) and the coating (4) contribute

equally to the interaction with the other half space (2), i.e., at I 3b

2Aj( 4 )2 (1) A12 (1) + A4 2(l).

Thus the thicker the coating, the greater the range of separation distance over

which the coating's properties mask those of the substrate.

5.3 Absence of an Optimum Coating Thickness

While a suitable coating will reduce the attraction between two substrates,

there exists no optimum thickness, i.e., the attraction at any fixed separation

I varies monotonically with increasing b. To demonstrate this we evaluate

8A1 4 2 /ab and rearrange the result into

BA142 f(l+r)e-rR(b/l)dr
= 2 2 2 2 2 2 (5.7)

(r2 _pl)(r 2-P4 )(plP 4 )

with
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R(b/1) =2 r (l+b/l)2f1 ( _14) 2 (l+b1) 2 ] x

(5.8)

4 2_2 4 2_2 4 2_2r (p4-P) + P (r-P + P p(p 1-r)

2 2 2 2 2 2 2 2 2 2 2 2[r 4r (1+b/t) I [r +p (1.b/1) I [r +ep (14-b/1) I

Thus the dielectric properties determine the sign of the derivative with no

optimum exists.

5.4 Efetof Coating's Physical Properties

Figs. 8 and 9 show the effect of absorption strength and frequency of the

coating on the interaction of two quartz half spaces across vacuum. The addi-

tion of the coating can either increase or decrease the attraction. Sin~ce the

* curves rarely intersect one another, a ranking of various coating materials with

respect to their effect on the interaction could be based on the Ilamaker

* constant evaluated at just one separation distance, say 1=0. At 1=0, the

Hamaker constant for substrate/coating/vacuum/substrate is identical to that for

a half space of the opposing substrate and can be estimated from (3.15).

As an example, Fig. 10 indicates a ranking of various potential materials

for coating one of two interacting quartz half-spaces. Coatings of materials

above the curve passing through quartz will strengthen the attraction, while

those materials below the curve will weaken it. Materials closest to the lower

* left corner of this plot (weak UV absorption in low frequency end of the UV
24
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spectrum) will reduce the interaction most. Of those materials listed, Teflon

seems best, with water and short-chain alkanes next. However, none of the

materials listed will reduce the interaction between two quartz half spaces by

more than 50%.

To show that rankings based on calculations of the nonretarded Hamaker

constant at 1=0 are approximately applicable at other separations, we computed

the profile with separation distance for four different materials, two with a

nonretarded A of 5x0-20 j and two with 8xlO-20j. The material properties were

chosen from Fig. 10 to be as different as possible. Yet the curves in each

pair (Fig. 11) nearly coincide at all separations.

6. INTERACTIONS BETWEEN A SPHERE AND A CYLINDER

The expressions developed in the previous sections for the interaction

potential between uncoated and coated half spaces can be transformed into

interactions between a sphere of radius a and a cylinder of radius R through

(1.2) with Ri=a and R2=aR/(a+R). The approximation requires only that the prin-

ciple radii of curvature exceed significantly the minimum separation h and the

maximum significant wavelength L=2nc/&1~jm,

Substitution of (4.6) for the coated systems leads to

21  2 1  22

-hc a n20-l n240- r2r4 G4) G(r2 )
327T 1/2 2 2 2

h(l~a/R) n20
+ 1  n 40+1 r2-r r4  r2

2 2 2  2 (1+b/h))n-n1-r2/r1 G(r 2 (+/)n10-n4 0  2 2  2 [2 (6.1)
2 2 r2D22 2 2 2 2.

nlo+n4 0  (r2-pl)(r 2-P4)r
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"P2/r14 O(Pl(1+b/h)) 1-P42/r14 G(P4(1+b/h))
+ 1 1 1 + 4 14 4

2 2 2 2 2 2 22 

(P -P4 )(P -r2 ) Pl (P4 -P1 )(P4 -r2 ) p4

These expressions require the numerical evaluation of

OD2 2G(x) = f ln(l+(r/x) (1+r)exp(-r)/r dr (6.2)
0

which has limiting forms

r - r G - 2/x 2

r - 0 G 0(1/x) (6.3)

We have performed no numerical calculations since the potentials should behave

similarly to those for flat plates and the force follows directly from the flat

plate potential as

1/2)'
F = - 8V/ah = 2n(R R Vp (h) (6.4)

1 2 Vf

Hence the magnitude of the force for a coated system can be calculated directly

from (4.6) and (6.4) for comparison with gravitational or viscous forces which

might be important in a specific application.

.2
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APPENDIX A: TABLES

TABLE 1

Non-Retarded Hamaker Constants

Identical Half-Spaces Across Vacuum

2-
Material w n. -1 A.. (10 erg).Jo 33 ).

(1016s-11 E.3.9 Eg. 3.3.

Quartz 2.032 1.359 8.52 8.83
Polystyrene 1.354 1.447 6.19 6.37

Sapphire 2.017 2.071 14.72 15.6
Teflon 1.566 0.748 2.69 2.75
Water 1.899 0.755 3.51 3.90

TABLE 2

Non-Retarded Hamaker Constants

Dissimilar Half-Spaces Across Vacuum

Materials(j/k) Ajk (10-1 3 erg)

------------------- Eg. 3.15 Ea. 3.3

Quartz/Water 5.31 5.59
Sapphire/Water 6.92 7.40
Quartz/Polystyrene 7.16 7.34
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APPENDIX B: FIGURES

p..

FIGURE CAPTIONS

1. Dielectric spectrum for water from the approximation 2.7 (-...) compared

with the detailed construction of Gingell and Parsegian (13) evaluated at

the sampling frequencies tn(X).

2. Interaction of identical quartz half spaces across vacuum. Test of approxi-

mations (-...) against full series solution (X) given by (3.2).

3. Interaction of quartz and water across vacuum. Test of approximations

(....) against full series soution (X) given by (3.2).

4. Effect of strength of UV absorption strength on the interaction of two iden-

tical uncoated half spaces across vacuum, as computed from (3.12). From

2bottom to top, n 10 - = 0.5, 1, 1.5, 2, and 2.5 while w = 1.5x10 16 Hz.

5. Effect of UV absorption frequency on the interaction of two identical

uncoated half spaces across vacuum, as computed from (3.12). From bottom to

top, w 1, 1.25, 1.5, 1.75, 2, and 2.25x1016 Hz while n 2 1  1.5= , .. n10- .

6. Effect of UV absorption strength and frequency on the nonretarded interac-

tion of two identical uncoated half spaces across vacuum. Curves denote loci

of Ajj=const, computed from (3.15), while points denote properties of par-

ticular materials (9). From lower left to upper right, Ajj = 2, 3, 4

-20
.11x 0 J.

7. Effect of film thickness on the interaction of two quartz half-spaces

separated by vacuum when one half space is coated with a film of
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polystyrene. Film thickness increases from upper to lower curves: b 0,

0.1, 0.316, 1, 3.16, 10nm. Lower curve represents a polystyrene half space

interacting with a quartz half space.

8. Effect of absorption strength of coating upon the interaction of two quartz

half spaces across vacuum when one of the half spaces is coated. From bot-

tom to top, n2-1 0.001, 0.5, 1, 1.5, 2, 2.5. Other properties of film

4nclude b = lnm, w4 = 1.354x10
16s- 1 ,

9. Effect of absorption frequency of coating upon the interaction of two quartz

half spaces across vacuum when one of the half spaces is coated. From bot-

-16
tom to top, w4 = 0.5, 1, 1.5, 2, 2.5x0 -  Hz. Other properties of film

2include b = lnm, n40 -1 = 0.447.

10. Screening of potential coating materials. Curves give the value of the

nonretarded Hamaker constant for interaction across vacuum of a half space

with the properties given by the ordinate and abscissa with a second half

space of quartz, as computed from (3.15). From lower left to upper right,

Ajk = 4, 5, 6 ... 11 x 10- 20 j.

11. A test of the hypothesis that Fig. 10 is adequate for screening potential

materials for coating one of two quartz half spaces interacting across

vacuum. The four curves correspond to four different lnm coatings, two

with properties at opposite ends of the 5 x 10- 20j line in Fig. 10 and two

at opposite ends of the 8x10-20j line.

12. Plot of F(x) obtained by numerical integration on (3.10).
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